
The Case for Servers in a Peer-to-Peer World
Shirshanka Das, Saurabh Tewari, Leonard Kleinrock

Computer Science Department
University of California Los Angeles

Los Angeles, CA 90095-1596
{shanky, stewari, lk}@cs.ucla.edu

Abstract— The increasing ease of self-expression and web-
publishing has resulted in an explosion in the amount of content
being generated in the current Internet. Besides traditional
sources such as news portals, regular users are documenting their
lives and thoughts and other people are subscribing, downloading
and viewing this content. A lot of content therefore is being
generated at the edge and consumed by the edge.

Traditional client-server architectures are known to be in-
effective in handling large correlated bursts of user demands.
However, with RSS becoming more popular, such flash crowd
scenarios will be more and more commonplace due to automated
polling and downloads. Peer to peer protocols such as BitTorrent
provide an attractive solution for such scenarios. BitTorrent
networks are scalable, and the expected download time is
independent of the arrival rate of peers (content consumers).
However, the base performance of a BitTorrent network may not
be fast enough from a user or content publisher’s perspective.
Besides, BitTorrent gives poor results towards the end of a flash
crowd when most of the large burst of arrivals have downloaded
and left, and there are not too many peers online.

We motivate the need for a content delivery network with well
connected servers to participate in BitTorrent delivery streams.
The servers are dynamically added and function as cushions to
handle increase in demand as well as bolster a delivery stream
when there is a paucity of users. We analytically model the
approach and determine the average download time both in
steady state and in the transient state. Our analysis shows that a
content delivery provider can provision the deployment of servers
on-the-fly based on the arrival rate of peers to provide a certain
pre-agreed average download time.

I. INTRODUCTION

The enormous popularity of weblogs and peer to peer
applications over the last couple of years points to a paradigm
shift in the traditional formats of publishing on the world
wide web. While media houses and news providers such as
CNN and BBC remain significant providers of content for the
web, freelancing individuals such as Adam Curry have become
famous overnight through their strong online presence through
weblogs or blogs as they are commonly termed.

Users are generating and publishing content on the Web
faster than ever and in much larger amounts. While many
people are using free online servers like Xanga.com, these free
online sites are getting seriously overloaded by the millions
of hits they get. Some of these sites such as livejournal.com
are getting seriously bottlenecked over time. In most cases,
storage is not the bottleneck; it’s just the server not being able
to handle the huge number of client accesses.

We believe that users will be willing to adopt more and
more decentralized ways of publishing content in order to get
around the scaling problems of the traditional client-server
architecture. For example, they could depend on the main
server only to point to or host the metadata related to the con-
tent (e.g. the torrent file corresponding to a BitTorrent down-
load) allowing everyone to retrieve the data in a cooperative
manner. Swarming peer-to-peer protocols such as BitTorrent
have proven very successful at such edge-to-edge delivery of
content. However, the massive popularity of BitTorrent have
been chiefly with respect to illegal, copyrighted material, for
which users are willing to wait an extra night so long as the
download is free. As more traditional applications on the web
transition to swarming downloads, users will demand a more
spontaneous experience, driving incentive for content delivery
systems to provide some of the resources needed to maintain
high download rates. One example, Prodigem [10] aims to do
exactly that.

II. RELATED WORK

There has been a significant amount of commerical as well
as research interest in the content delivery problem. HTTP-
based Content Distribution Networks (CDNs) have success-
fully been used to serve Web pages, offloading origin servers
and reducing download latency. These systems, such as those
from Akamai [1], generally consist of a distributed set of
caching Web proxies and a set of request redirectors. The
proxies are responsible for caching requested objects so that
they can be served from the edge of the network instead of
contacting the origin server. The redirectors, often modified
DNS servers, send clients to appropriate CDN nodes, using
a number of factors, such as server load, request locality
(presence of object in the cache), and proximity (network
latency to the node).

BitTorrent [3], a peer-to-peer protocol proposed and im-
plemented in 2001 has rapidly gained popularity. Millions of
people use it regularly to share legal as well as copyrighted
content with millions of others. There are already efforts to
harness the power of BitTorrent to create full fledged content
delivery sites with proper rights management for large files at
a fraction of the cost incurred by heavyweight content delivery
providers like Akamai.

Cooperative content delivery has also been the focus of sev-
eral research efforts recently. SplitStream [2] uses BitTorrent-

like swarming coupled with network coding to get greater
robustness, CoDeploy [8] uses a set of cooperative HTTP
proxies which execute partial downloads using the latest
HTTP protocol features to assemble the complete file in a
somewhat similar fashion to BitTorrent. All the commercial
efforts and the several papers that have proposed swarming
like mechanisms to deploy the content would benefit directly
from the work we describe in this paper.

There has been a fair amount of research on modeling
BitTorrent [6], [7], [9], [11], [12]. Reference [11] models the
rate of change in the number of downloaders and seeds in
the system and derives the expected download time (for any
one downloader) in the steady-state using Little’s result [4] to
obtain the number of downloaders in the steady-state. We use
their modeling approach for our work in this paper and provide
the relevant extensions to include the effect of overlay nodes.
Reference [12] uses a branching process model to obtain the
total time to serve a certain number of downloaders all of
whom are assumed to have arrived at the same time. Their
base model assumes that the clients stay on in the system even
after their downloads are complete. This assumption is later
replaced by a model where a certain fraction of downloaders
leave immediately after their downloads are complete while
the remaining remain in the system forever. We believe that it
is more realistic to assume that the clients who have completed
downloading will remain in the system only for a (short)
random amount of time as assumed by [11]. Reference [6]
presents a very generalized model for BitTorrent-like systems.
However, for the metric of our interest, the expected down-
load time, the conclusions are similar to those in the more
simplified models of [11], [12] so we chose to extend the
model in [11]. The model in [12] is extended for the limited
network capacity case in [7] which models swarming-based
content distribution in adhoc wireless networks. While the
network capacity is limited in wired networks also, we do
not include a limit on the network capacity in our case as the
service capacity is the limiting factor in the download time
in wired networks. The model in [11] is extended in [9] to
include the effect of heterogenous client link capacities on the
average download time. In our model, the link capacities are
heterogenous between the overlay nodes and the client nodes
but we do not distinguish between client nodes themselves
since our goal is to understand the effect of overlay nodes.

Our Contributions

• We formulate the problem faced by a content delivery
service provider seeking to optimize its resource usage
while maintaining the expected download time constraint
as set by its agreement with the customer.

• We propose the concept of hierarchical swarming, where
certain nodes in the BitTorrent overlay act as high-speed
always-on seeds, while the clients exhibit more realistic
behaviours, such as logging off as soon as their download
is complete.

• We model the problem using a simple deterministic fluid
model extending the model proposed in [11].

• We model the effect of the number of hierarchical nodes
on the average download time, and thus outline a simple
algorithm for a content delivery provider to optimize its
resources.

Organization of the Paper

The paper is organized as follows. In Section III we give a
brief overview of the BitTorrent protocol. Section IV defines
a projected use case for swarming content downloads and
outlines our assumptions about the scenario. In Section V, we
describe a deterministic fluid model for hierarchical swarming
and derive the expressions for the expected download time in
the steady-state and the transient phase. Finally, Section VI
concludes the paper.

III. OVERVIEW OF BITTORRENT

A good description of the BitTorrent protocol from its
creator is given in [3]. In this section, we only describe the
aspects of BitTorrent that are directly relevant to our discussion
in this paper. BitTorrent is typically used to distribute large
files. A key feature of BitTorrent is its division of the content
into several small pieces. Users wishing to download the
content obtain a (partial) list of other downloaders from a
tracker which keeps track of current downloaders and the
pieces of the content they have already obtained. The user
wishing to download connects to other downloaders based on
the list provided by the tracker and these peers download and
upload from each other at the same time. The protocol enforces
sharing by limiting the download rate of users depending
on their upload rate. Division of the content into a large
number of small pieces allows the downloaders to have content
to upload to other downloaders while they are downloading
the remaining portion of the content [11]. Thus, the service
capacity of the system scales in proportion to the number of
downloaders.

IV. CONTENT DELIVERY USING BITTORRENT

In this section we put forward the case for combining the
power of BitTorrent and the ease of RSS to create a self-
swarming self-updating content delivery mechanism [5]. The
idea is that RSS feeds enclose torrent files which are updated
when new content is created and published. Client applications
polling the RSS feeds will automatically download the torrent
and start downloading the actual file referred to by the torrent
using any Bittorrent-compliant client. Thus, asynchronous
notification follows cooperative downloading leading to a
much better download experience. We argue for the case of
having content delivery providers take part in this communal
download to provide power (in terms of upload bandwidth) and
reliability (through always-“up” nodes) when the BitTorrent
network is unable to achieve satisfactory download times.

To formally describe the system, we assume that we have :

• A BitTorrent overlay of clients who want to download a
certain file.

• A content delivery provider who provides M overlay
nodes. The overlay nodes provide more capability, for

example, we assume that the upload rate of the overlay
nodes is m times (100 to 1000) that of the clients (e.g.
1 Gbps versus 1.5 Mbps).

Time

New seeds

generated

Seeding clients

starting new cycle

Total seeds so

far

t 1 1 1

2t 1 1 2

3t 1 1 3

. . . .

. . . .

. . . .

T mt 1 1 m

T+t 1+1 3* m+2

T+2t 1+1 3 m+4

. . . .

. . . .

. . . .

2T T+mt 2 3 3m

2T+t 1+3 7** 3m+4

2T+2t 1+3 7 3m+8

. . . .

. . . .

. . . .

3T 2T+mt 4 7 7m

3T+t 1+7 15*** 7m+8

3T+2t 1+7 15 7m+16

. . . .

. . . .

. . . .

4T 3T+mt 8 15 15m

4T+t 1+15 31**** 15m+16

. . . 15m+32

. . . .

. . . .

* 1 done, starting new + 1 newly created by regular node + 1 newly created by overlay

** 3 done, starting new + 3 newly created by regular node + 1 newly created by overlay

*** 7 done, starting new + 7 newly created by regular node + 1 newly created by overlay

**** 15 done, starting new + 15 newly created by regular node + 1 newly created by overlay

m(2
1
-1)

m(2
2
-1)

m(2

3
-1)

m(2

4
-1)

Fig. 1. Download Time for M = 1 with ideal schedule

While the subsequent sections provide analysis of the
download time in these systems for realistic scenarios (such
as having the clients leave immediately after finishing their
download, or staying on for only a short random amount of
time after they finish), we can see the power of our approach
with the simple idealized approach proposed in [12]. Let us
consider the case where there is a single overlay node, i.e.
M = 1. Assume that the download time for a client is
constrained only by the upload speed to that client and not by
the client’s download speed. Let t be the time for an overlay
node to upload the entire file to a client, and T be the time
for a regular client to upload the entire file to another client.
If the upload speed of the overlay node is m times that of
the client, then T = mt. Let there be N clients wishing to
download the file at time 0. As discussed in [12], to increase
the service capacity as quickly as possible, the overlay nodes
should upload to a single client at a time at the fastest rate the
client can download the file. Thus, at time t, one more replica
of the file is created and by time T , m additional replicas of the
file have been created. Fig. 1 shows the exponential increase
in the service capacity with such an approach. Notice that each
of the m clients that the overlay node downloaded to in time
T have become seeds and are downloading to other clients.
Thus, by time 2T , the m seeding clients will download to an
additional m clients who also become seeds. The overlay node

would also have downloaded to an additional m clients in this
time. Thus, by time 2T , 3m clients will have the entire file.
As shown in Fig. 1, the number of completed downloads in
time kT grows as m(2k −1). Hence, the time to serve a burst
of N file requests is T log2(N/m). Recall that [12] shows the
exponential increase in service capacity for a “pure” BitTorrent
network, but the time to serve a burst of N file requests in their
case is T log2(N). Thus, we see that the factor of m increase in
uploading is equivalent to having a factor of m fewer requests
leading to a log2m decrease in the total service time.

V. SIMPLE FLUID MODEL

We use a simple fluid model based on [11] for our
hierarchical-swarming content delivery network. While a sto-
chastic model would be more accurate, the stochastic analysis
in [11] suggests that the stochastic variations do not lead to any
qualitative difference in conclusions. While a service provider
offering such a hierarchical-swarming content delivery service
may wish to conduct further analysis accommodating stochas-
tic variations, since the service capacity of the underlying
BitTorrent network scales linearly with the number of down-
loaders, we expect that the stochastic variations in the number
of downloaders would not change the expected download time
at a given client arrival rate in the steady-state.

In our model we use the following quantities to characterize
a content-delivery network that uses BitTorrent-like swarming
techniques to disseminate data to its clients. All analysis is
with regard to the serving of a single file whose size is assumed
to be 1.

x(t): Number of clients (who are downloading the content)
in the system at time t

y(t): Number of overlay nodes in the system at time t
z(t): Number of clients who have finished downloading but

have not yet left the system at time t
λ: The arrival rate of new clients. We assume that clients

arrive according to a Poisson process.
µ: The uploading bandwidth of a given client. We assume

that all clients have the same uploading bandwidth.
c: The downloading bandwidth of a given client. We assume

that all clients have the same downloading bandwidth and
c >= µ.

mµ: The uploading bandwidth of a given content delivery
node. We assume that m >> 1, and all content delivery nodes
have the same upload bandwidth.

θ: The rate at which clients abort the download.
γ: The rate at which clients that have finished downloading

leave the system.
η: The effectiveness of the file sharing (if the swarming

clients are constantly uploading the pieces of the content they
have to other clients while they are downloading the remaining
pieces of the content, file sharing is 100% effective i.e. η is
the fraction of the upload capacity of swarming clients that is
being utilized with values in [0,1]).

In a swarming content-delivery network, the provider has
to make provisions for the worst case which involves the
client logging off as soon as he completes his download. We

have included the possibility of some clients remaining in the
system even after they have finished downloading (z(t)) for
completeness. Specifically, the model allows for clients who
have finished downloading to remain in the system for an
exponentially distributed random time with mean 1

γ . However,
the provider must assume the rate at which the clients who
have completed downloading leave the system to be very high
for provisioning purposes i.e. γ → ∞.

Without any constraint on downloading bandwidth, the total
uploading rate of the system can be expressed as µ(ηx(t) +
my(t) + z(t)). If η = 0, then we have a simple content
delivery network (like Akamai), where the overlay nodes act
as mirrors for the content. When the downloading bandwidth
constraint is considered, the total uploading rate will be
min {cx(t), µ(ηx(t) + my(t) + z(t))}.

Occasionally, a client may leave before the downloading is
complete in case the client is unsatisfied with the download
experience. We assume that each client independently aborts
its download after a certain amount of time which is exponen-
tially distributed with mean 1/θ. Equivalently, θ is the rate at
which clients abort their download and leave the system. In
a fluid model, the rate of departures of downloaders will be
given by :

min {cx(t), µ(ηx(t) + my(t) + z(t))} + θx(t)

We now describe the evolution of x and z based on the
above model. A deterministic fluid model for the evolution of
the number of peers (clients) is given by :

dx(t)
dt

= λ − θx(t) − min {cx(t), µ(ηx(t) + my(t) + z(t))}
(1)

dz(t)
dt

= min {cx(t), µ(ηx(t) + my(t) + z(t))} − γz(t) (2)

A. Steady State Analysis

At the steady state, dx(t)
dt = 0 and dz(t)

dt = 0. Hence, from
(1) and (2), we have

λ − θx̄ − min {cx̄, µ(ηx̄ + mM + z̄)} = 0 (3)

min {cx̄, µ(ηx̄ + mM + z̄)} − γz̄ = 0 (4)

where x̄ and z̄ are the equilibrium values of x(t) and z(t),
respectively and M is the number of overlay nodes deployed
by the provider at the steady-state.

Like [11], we also assume η > 0. When the downloading
speed is the constraint, i.e. if cx̄ <= µ(ηx̄ + mM + z̄), (3)
yields

x̄ =
λ

θ + c
(5)

When the downloading speed of clients is the constraint,
the overlay nodes are not being utilized fully and the provider
would prefer to not over-provision the number of overlay
nodes at least in steady-state. When the upload bandwidth is
the constraint, i.e., if cx̄ ≥ µ(ηx̄ + mM + z̄), equations (3)
and (4) yield

x̄ =
λ

ν(1 + θ
ν)

− mM

η(1 + θ
ν)

(6)

z̄ =
λ

γ(1 + θ
ν)

+
θmM

γη(1 + θ
ν)

(7)

where 1
ν = 1

η (1
µ − 1

γ) (we assume that clients remain in the
system after completing their download for a shorter time
than their expected download time in the “pure” BitTorrent
network, i.e. 1

µ > 1
γ).

One can easily verify that (6), (7) reduce to (4) in [11] when
no overlay nodes are deployed and only BitTorrent is used for
content delivery, i.e. M = 0.

To calculate the average downloading time for a client in
steady state, we can use Little’s Result as :

λ − θx̄

λ
x̄ = (λ − θx̄)T, (8)

where T is the average downloading time, (λ − θx̄) is the
average rate at which downloads are completed, and λ−θx̄

λ is
the fraction of interesting downloaders, that is the downloaders
that will continue to completion of the download. Using (5)
and (6), we get the average download time as

T =
1

θ + c
(9)

for the download constrained region and

T =
1

ν(1 + θ
ν)

(1 − mM

λη
ν) (10)

for the upload constrained region.
Comparing this expression to that derived in [11], we

see that the existence of overlay nodes linearly decreases
the expected download time compared to a regular edge-
node based BitTorrent network. However, the reduction in
the expected download time on account of the overlay nodes
decreases as the rate of arrivals λ increases. Thus, the content
provider would need to increase M linearly with increasing λ
to keep the average download time the same.

A content delivery provider can use (10) to calculate the
number of overlay nodes to deploy for a given expected
download time target, given the arrival rate of new nodes,
and the upload and download bandwidth. As discussed earlier,
the provider should assume γ → ∞ for overlay capacity
provisioning. We can rewrite (10) for this case as

T =
1

µη(1 + θ
µη)

(1 − mM

λη
µη) (11)

Since µη < ν, we see that the presence of clients who have
finished downloading (i.e. 1

γ > 0 and z(t) > 0) increases
the effect of overlay nodes on the download time1. This is in
line with our analysis in Section IV where we found for the
case where all clients remain in the system after completing
their download that addition of overlay nodes is equivalent
to having fewer requests by a factor equal to the additional
capacity added by the overlay nodes.

1The percentage reduction in the download time on account of the overlay
nodes is T−T0

T
= mM

λη
ν where T is the expected download time for non-

zero M and T0 is the expected download time when M = 0. When 1
γ

= 0

(and z(t) = 0), T−T0
T

= mM
λη

µη = mMµ
λ

.

Finally, it would also be prudent to assume that no clients
leave on account of frustration. With θ = 0 and including the
download constraint, we write the expected download time to
be

T = max

{
1
c
,

1
µη

− mM

λη

}
(12)

We plot (12) in Fig. 2. As [11] discusses, for large files and
multiple downloaders, η, the effectiveness of the BitTorrent
file sharing is nearly 1 and we choose η = 1 in Fig. 2. The
overlay node’s upload capacity is likely to be 100 times more
than that of a client’s upload capacity. We plot (12) in Fig. 2
with M varying from 1 to 6, thus illustrating how one can
achieve a target expected download time by deploying more
nodes. Guided by the measurements on the BitTorrent network
reported in [11], we choose µ = 0.001. The downloading
speed in a typical broadband connection to home is three times
or higher than the uploading speed so we choose c = 0.003.

0

200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Lambda

D
o

w
n

lo
a

d
 T

im
e

"Pure" BitTorrent Network Performance

Downloading Speed Constraint Limit

M = 1

M = 6

M = 5

M = 4

M = 3

M = 2

Fig. 2. Steady-State Expected Download Time

We see from Fig. 2 that when λ, the client arrival rate, is
very small, there is no congestion and the download time is
constrained only by the downloading speed c resulting in an
expected download time of 1

c . This is a direct result of the
fixed upload capacity offered by overlay nodes. In contrast,
in a “pure” BitTorrent network, the download time is limited
by the upload bandwidth of peers independent of the client
arrival rate.

We also see that the impact of the service capacity added
by a fixed number of overlay nodes diminishes as λ increases.
Therefore, the number of overlay nodes a service provider
needs to deploy to maintain a target expected download time
increases linearly as λ increases2. A service provider can

2While having to increase servers in proportion to the request rate is same
as that required in client-server systems, we note that a “pure” client-server-
based content delivery network is completely unscalable with a fixed number
of overlay servers (e.g. a 6 overlay server system can handle a λ of only
up to 0.6 beyond which the download time becomes unbounded) while a
swarming-download-assisted content delivery network can handle arbitrarily
large λ (even with λ → ∞, the download time is no more than 1

µη
, the

download time for a “pure” BitTorrent network). In fact, comparing to the case
of 6 overlay servers, we see that the swarming downloads allow the system
to provide the best possible download time (i.e. download time constrained
only by the client download speed) up to λ ∼ 0.8.

estimate the required number of servers given the expected
value of λ using (12).

Our analysis in this section targets one service model where
the service provider agreement is on the maximum download
time up to a maximum client arrival rate. In many content
delivery scenarios, the client arrival rate changes suddenly (e.g.
the content may become very popular suddenly for a short
time or has very high popularity in the initial period). An
alternative service model for these scenarios is for the service
provider to guarantee a maximum download time independent
on the client arrival rate and dynamically adjust the number of
overlay servers dedicated to a particular content. In the next
section, we investigate the transient behavior of swarming-
download-assisted content delivery and find that, even if the
client arrival rate increases suddenly a service provider is
likely to have the opportunity to detect the change and react
appropriately.

B. Transient Analysis

We know that the presence of the clients who have finished
downloading improves the expected download time. However,
since a service provider making average download time guar-
antees must not assume this help from the clients who have
finished downloading. Therefore, for our transient analysis, we
assume z(t) = 0. We also assume θ = 0 in this section for
similar reasons3 and η ∼ 1 when x(t) > 0 in this section.

For the expressions derived below, we assume that the
system starts in an empty state, i.e. x(t = 0) = 0. At least
one overlay node will be deployed to seed the system. In the
initial period, when there are very few clients in the system,
the downloads can be served by the overlay node itself and
the downloading speed of the clients is the constraint in the
expected download time. For this download constraint region,
from (1) and x(t = 0) = 0, we obtain

x(t) =
λ

c
(1 − e−ct) (13)

The expected download time in this region will be 1
c .

As more clients arrive (i.e. cx(t) > µx(t) + mµM), the
uploading speed will become the constraint. Specifically, the
uploading speed becomes the constraint when

x(t) =
mµM

c − µ
(14)

Substituting (14) in (13), we obtain the time τ after which the
uploading speed becomes the constraint

τ =
1
c
ln(1 − mµcM

λ(c − µ)
) (15)

From (1) and x(t = τ) = mµM
c−µ , we obtain x(t) for t >

1
c ln(1 − cmµM

λ(c−µ))

x(t) =
λ − mµM

µ
−

λ
µ − cmµM

µ(c−µ)

(1 − cmµM
λ(c−µ))

µ
c

e−µt (16)

3One can easily solve (1) and (2) for the general case to obtain the x(t)
and z(t) expressions but the analysis of the general case has little value for
our application.

Since the clients complete the download at rate µx(t) +
mµM when x(t) clients are downloading, the expected down-
load time can be estimated as x(t)

µx(t)+mµM . Hence, from (16),
we obtain the expected download time d̄(t) for t > 1

c ln(1 −
cmµM
λ(c−µ))

d̄(t) =
1
µ

[1 +
mµM

(λ − mµM)(1 − e−µt)
]−1 (17)

Thus, we can write the expected download time in the transient
phase as

d̄(t) = max

{
1
c
,
1
µ

[1 +
mµM

(λ − mµM)(1 − e−µt)
]−1

}
(18)

0

200

400

600

800

1000

1200

0 1000 2000 3000 4000 5000

Time

D
o

w
n

lo
a

d
 T

im
e

"Pure" BitTorrent Network Performance

Downloading Speed Constraint Limit

lambda=1.6

lambda=0.15

lambda=0.2

lambda=0.3

lambda=0.5
lambda=0.8

Fig. 3. Expected Download Time in the Transient Period with M = 1

We plot (18) in Fig. 3 for µ = 0.001, c = 0.003,m = 100,
and M = 1, the same parameters that were used for Fig. 2.
As we can see from Fig. 3, as the arrival rate λ increases,
the region where τ , the expected download time is limited by
the downloading speed, diminishes. In addition, in the upload
speed constraint region, we find that the expected download
time reaches the steady-state download time faster as the
arrival rate λ increases. Let us now estimate the duration of
the transient phase in the upload constraint region.

From (17), we find that the asymptote for the transient
phase in the upload constraint region (Fig. 4) is (λ

mµM − 1)t.
Equating to the steady-state download time expression in (12)

a
s
ym

p
to

te

Transition Timeτ’

D
o
w

n
lo

a
d
 T

im
e

steady-state download time

Time

Fig. 4. Transition Period Estimation in Upload Constraint Region

with η = 1, we get the transient period in the upload constraint
region to be

τ ′ =
mM

λ
(19)

Both (15) and (19) show that the transient time is inversely
proportional to the client arrival rate. However, we note from
(14) that the number of downloading clients in the system at τ ′

is independent of λ. Further, we see from (6) that the number
of downloading clients in the system grows proportionally
with λ and from (12) that the number of servers needs to
be increased proportionally with λ. Thus, a service provider
can keep track of the number of downloading clients in the
system and follow the simple strategy of increasing the number
of overlay nodes as the number of downloading clients crosses
(pre-defined) threshold levels.

VI. CONCLUSIONS

In this paper, we make a case for bringing together tradi-
tional client/distributed-server paradigms and pure BitTorrent-
based peer-to-peer delivery models. The content delivery
provider benefits as it can provide guarantees about expected
download times while deploying a much lower number of
servers and the end user benefits by getting a much shorter
download time compared to a pure BitTorrent download.

After motivating the need for using traditional content
servers alongside BitTorrent peer-to-peer delivery, we extend
a deterministic fluid model for pure BitTorrent network to
analyze this new scenario in the steady-state as well as the
transient phase. Our results illustrate the benefits of using
traditional content servers alongside BitTorrent peer-to-peer
delivery over using either of the two approaches by them-
selves.

A service provider can use our results for download time
in the steady-state to determine the number of servers needed
to guarantee a target download time up to a certain maximum
client arrival rate. Our transient analysis shows that the service
provider can dynamically adapt the number of servers they
need to deploy to meet the guaranteed download time even
when the popularity of a content increases suddenly.

REFERENCES

[1] Akamai Technologies, http://www.akamai.com.
[2] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron and

A. Singh, “SplitStream: High-bandwidth multicast in a cooperative
environment,” In Proc. of ACM SOSP, October 2003.

[3] B. Cohen, “Incentives Build Robustness in BitTorrent,” In IPTPS,
February 2003.

[4] L. Kleinrock, Queueing Systems, Volume I: Theory, Wiley Intersciece,
New York, 1975.

[5] Legal Torrents, http://www.legaltorrents.com/rss.xml.
[6] L. Massouli and M. Vojnovic, “Coupon replication systems,” In Proc.

of SIGMETRICS, June 2005.
[7] A. Nandan, S. Das, G. Pau, M.Y. Sanadidi and M. Gerla, “Cooperative

Downloading in Vehicular Wireless Ad Hoc Networks,” In Proc. of
Wireless On-Demand Networks and Services (WONS), January 2005.

[8] K. Park and V. S. Pai “Deploying Large File Transfer on an HTTP
Content Distribution Network,” In Proc. of the First Workshop on Real,
Large Distributed Systems (WORLDS), December 2004.

[9] F. L. Piccolo, G. Neglia and G. Bianchi, “The Effect of Heterogeneous
Link Capacities in BitTorrent-Like File Sharing Systems,” In Proc. of
HOT-P2P, October 2004.

[10] Prodigem Hosting Solutions, http://www.prodigem.com.
[11] D. Qiu and R. Srikant, “Modeling and Performance Analysis of

BitTorrent-Like Peer-Peer Networks,” In Proc. of SIGCOMM, Septem-
ber 2004.

[12] X. Yang and G. de Veciana, “Service Capacity of Peer to Peer
Networks,” In Proc. of INFOCOM, March 2004.

